a

Applied Machine Learning in Python Course

A hands-on, scikit-learn–centered ML course that equips you with practical skills for real-world predictive modeling using Python and ensemble methods.

access

Lifetime

level

Medium

certificate

Certificate of completion

language

English

What will you learn in Applied Machine Learning in Python Course

  • Build and evaluate supervised and unsupervised models using scikit‑learn (e.g. decision trees, random forests, regression, K‑means clustering).

  • Understand techniques for model validation, overfitting prevention, cross-validation, feature engineering, and boosting methods.

​​​​​​​​​​

  • Learn to apply ensemble methods to improve predictive accuracy and solve classification/regression tasks.

  • Gain practical workflows for machine learning projects—from dataset preparation through model tuning to evaluation.

Program Overview

Module 1: Fundamentals of Machine Learning

Duration: ~6 hours

  • Topics: ML lifecycle, supervised vs unsupervised learning, intro to scikit‑learn

  • Hands-on: Build K‑nearest neighbors and linear regression models on example datasets

Module 2: Decision Trees & Random Forests

Duration: ~1 week

  • Topics: Tree-based models for classification and regression, feature importance

  • Hands-on: Train and evaluate random forest models with cross-validation

Module 3: Clustering & Feature Engineering

Duration: ~1 week

  • Topics: K‑means clustering, dimensionality issues, feature scaling

  • Hands‑on: Cluster unlabeled data and improve performance with engineered features

Module 4: Ensemble Methods & Model Optimization

Duration: ~1 week

  • Topics: Gradient boosting, bagging, overfitting mitigation, hyperparameter tuning

  • Hands-on: Apply boosting techniques and cross-validated grid search for model improvement

Get certificate

Job Outlook

  • High demand for machine learning skills in roles like ML Engineer, Data Scientist, and Predictive Analytics Specialist

  • Applicable across industries—tech, finance, healthcare, marketing—with salaries from $80K–$150K+

  • Frequent hiring value for experience with Python, scikit‑learn, and real-world project workflows

  • Useful for freelance ML projects, startup technical roles, or building portfolio pieces for career switchers

Explore More Learning Paths

Take your machine learning skills even further with these curated learning paths. Each recommended course builds on your foundation in Python-based ML—helping you advance toward more complex models, cloud-scale deployment, and real-world ML applications.

Related Courses

1. Advanced Machine Learning on Google Cloud Specialization Course
Learn to design, build, and deploy scalable machine learning models on Google Cloud using advanced tools and real-world MLOps practices.

2. Machine Learning with Python Course
Strengthen your understanding of supervised and unsupervised learning, model evaluation, and Python-based ML workflows.

3. A Practical Guide to Machine Learning with Python Course
Apply ML concepts through hands-on exercises that teach practical implementation, optimization, and troubleshooting of Python ML models.

Related Reading

What Is Data Management?
A foundational guide explaining how data is collected, stored, organized, and governed—knowledge that’s essential for successful ML projects.

9.7Expert Score
Highly Recommendedx
A practical and well-paced intermediate machine learning course that's ideal for learners who've completed prior Python and visualization modules. It balances theory with hands-on scikit-learn implementation and helps solidify core ML skills.
Value
9.5
Price
9.3
Skills
9.8
Information
9.7
PROS
  • Hands-on emphasis with real datasets and model tuning in Python
  • Focus on practical ML workflows and widely-used tools (scikit‑learn)
  • Builds essential ML techniques like clustering, ensemble methods, boosting
CONS
  • Assumes prior familiarity with Python, Pandas, NumPy
  • Lacks deep dives into deep learning or neural networks

Specification: Applied Machine Learning in Python Course

access

Lifetime

level

Medium

certificate

Certificate of completion

language

English

FAQs

  • Prior experience with Python, Pandas, and NumPy is recommended.
  • Assumes familiarity with basic data handling and visualization.
  • Focuses on practical ML implementation using scikit-learn.
  • Ideal for learners who have completed foundational Python and data science modules.
  • Not suitable for absolute beginners in programming or ML.
  • Covers decision trees, random forests, regression, and K‑means clustering.
  • Teaches ensemble methods and boosting for improving model accuracy.
  • Includes hands-on projects for training, validation, and evaluation.
  • Focuses on real-world predictive modeling applications.
  • Prepares learners to apply ML in diverse business and technical scenarios.
  • Applicable for roles like ML Engineer, Data Scientist, or Predictive Analytics Specialist.
  • Provides practical workflow skills from data prep to model evaluation.
  • Builds competency in scikit-learn and ensemble methods.
  • Enhances portfolio for career switchers or freelancers.
  • Valuable across industries: tech, finance, healthcare, and marketing.
  • Four modules with durations ranging from ~6 hours to 1 week each.
  • Hands-on projects and exercises included for each topic.
  • Self-paced format allows flexible scheduling.
  • Covers fundamentals, decision trees, clustering, feature engineering, and ensemble methods.
  • Ideal for learners seeking practical ML experience efficiently.
  • Learn cross-validation and hyperparameter tuning.
  • Understand overfitting, bias-variance trade-offs, and model optimization.
  • Apply feature engineering to enhance predictive accuracy.
  • Gain hands-on experience with boosting and bagging techniques.
  • Skills are directly transferable to real-world machine learning projects.
Applied Machine Learning in Python Course
Applied Machine Learning in Python Course
Course | Career Focused Learning Platform
Logo